• NAT® (industrial premix – cold granulated feed <35C ° under vacuum with 24 months of expiry) for feed based on Polyunsaturated Fatty Acids Ω3 from liver oil of Halibut (or alternatively for feed intended for the production of Parmigiano – Reggiano and / or Grana Padano from a complex phyto-derivative obtained mechanically at low temperature (<35C °) for the extraction of the intracellular part of plants rich in Vitamin Retinoids), of natural Retinol (approximately 100,000,000.00 IU per Kg) adsorbed on a pool of marine algae very rich in Polyunsaturated Fatty Acid Ω 3 containing ( about of 15% of Omega3) with added Vitamin D 3 .
  • NAT P 5 granulé (feed supplement) based on Polyunsaturated Fatty Acids Ω3 from liver oil from Halibut (or alternatively for cows producing milk for the production of Parmigiano-Reggiano and / or Grana Padano from a phyto-derived complex obtained mechanically at low temperature (<35C °) of the intracellular part of plants rich in Retinoid Vitamers) containing approximately 10.000.000,00 IU / kg, added to high doses of Vitamin E, organic Selenium and Zinc in chelated form.
  • ANTIOXI POLIPHENOL PLUS ( feed supplement) in a soluble liquid emulsion based on a mix of antioxidants such as Falvonoids, natural polyphenols and Vitamin C, of different origins, enriched with α-tocopheryl acetate 98% or o Vitamin E at 2.0%).
  • NAT® Selé – (feed supplement in emulsion soluble ) with 20% α-tocopheryl-acetate Vit. E + Se with high assimilation.
  • FEED CONTROL (feed supplement in flour) based on a phyto-derivative complex obtained mechanically at low temperature (<35C °) for the extraction of the intracellular part of plants rich in antioxidants (Falvonoids, natural Polyphenols and Vitamin C, of different origin ) and officinal plants with bacteriostatic action (eg: garlic, willow, ginger, turmeric, etc …).
  • CITRONAT® PHYTODIAR PIG granulé (industrial feed premix for piglets) cold granulated (<35C °) under vacuum based on Fatty Acids Ω3 Polyinsulators from Halibut liver oil adsorbed on a pool of marine algae α-tocopheryl-acetate 98% Vitamine E is more one pool of polyphenols and biofalvonoids derived from multiple varieties of citricus, mix of acidifiers, natural-based anti-inflammatories, a latest-generation post-biotic for the regulation of intestinal microsism and a mix of phyto-derivatives obtained mechanically at low temperature ( <35C °) of the intracellular part for the control of intestinal bacterial forms of piglets).
  • CITROENAT® granulè (industrial premix for piglets feed) cold-pressed (<35C °) empty-coat (24 months expiry) based on Fatty Acids Ω3 Polyinsulators from Halibut liver oil adsorbed on a seaweed pool, with α-tocopheryl acetate 98% Vitamin E mixed with polyphenols and bioflavonoids derived from a mix of Citricus varieties).

For further information and information on the topics covered and technical material in general such as Labels, Technical Notes and Safety Data Sheets, Quality Certificates (ISO. 22000, GMP +, FCA) and Compliance please contact the author directly for E-mail


  1. Hall J.E., Guyton A.C. Textbook of Medical Physiology. 12th ed. Saunders/Elsevier; Philadelphia, PA, USA: 2011.
  2. Gastin P.B. Energy system interaction and relative contribution during maximal exercise. Sports Med. 2001;31:725–741. doi: 10.2165/00007256-200131100-00003. [PubMed] [Cross Ref]
  3. Berg J.M., Tymoczko J.L., Stryer L. Biochemistry. 5th ed. W.H. Freeman Publisher; New York, NY, USA: 2002. Fuel choice during exercise is determined by intensity and duration of activity.
  4. Ferreira de Souza C., Fernandes L.C. Production of reactive oxygen species during the aerobic and anaerobic exercise. Rev. Bras. Cinean. Desemp. Hum. 2006;8:102–109.
  5. Baron B., Noakes T.D., Dekerle J., Moullan F., Robin S., Matran R., Pelayo P. Why does exercise terminate at the maximal lactate steady state intensity? Br. J. Sports Med. 2008;42:528–533. doi: 10.1136/bjsm.2007.040444. [PubMed] [Cross Ref]
  6. Banister E.W., Cameron B.J.C. Exercise-induced hyperammonemia: Peripheral and central effects. Int. J. Sports Med. 1990;2:S129–S142. doi: 10.1055/s-2007-1024864. [PubMed] [Cross Ref]
  7. Brouns F., Beckers E., Wagenmakers A.J., Saris W.H. Ammonia accumulation during highly intensive long-lasting cycling: Individual observations. Int. J. Sports Med. 1990;2:S78–S84. doi: 10.1055/s-2007-1024858. [PubMed] [Cross Ref]
  8. Miramonti A.A., Stout J.R., Fukuda D.H., Robinson E.H., Wang R., La Monica M.B., Hoffman J.R. Effects of 4 weeks of high-intensity interval training and ß-hydroxy-ß-methylbutyric free acid supplementation on the onset of neuromuscular fatigue. J. Strength Cond. Res. 2016;30:626–634. doi: 10.1519/JSC.0000000000001140. [PubMed] [Cross Ref]
  9. Buchheit M., Laursen P.B. High-intensity interval training, solutions to the programming puzzle. Part II: Anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43:927–954. doi: 10.1007/s40279-013-0066-5. [PubMed] [Cross Ref]
  10. Fisher-Wellman K., Bloomer R.J. Acute exercise and oxidative stress: A 30 year history. Dyn. Med. 2009;8:1–25. doi: 10.1186/1476-5918-8-1. [PMC free article] [PubMed] [Cross Ref]
  11. Tarnopolsky M.A. Caffeine and endurance performance. Sports Med. 1994;18:109–125. doi: 10.2165/00007256-199418020-00004. [PubMed] [Cross Ref]
  12. Van der Beek E.J. Vitamin supplementation and physical exercise performance. J. Sports Sci. 1991;9:77–90. doi: 10.1080/02640419108729868. [PubMed] [Cross Ref]
  13. Chwalbiñska-Moneta J. Effect of creatine supplementation on aerobic performance and anaerobic capacity in elite rowers in the course of endurance training. Int. J. Sport Nutr. Exerc. Metab. 2003;13:173–183. doi: 10.1123/ijsnem.13.2.173. [PubMed] [Cross Ref]
  14. De Nigris F., Williams-Ignarro S., Sica V., Lerman L.O., D’Armiento F.P., Byrns R.E., Casamassimi A., Carpentiero D., Schiano C., Sumi D., et al. Effects of a pomegranate fruit extract rich in punicalagin on oxidation-sensitive genes and eNOS activity at sites of perturbed shear stress and atherogenesis. Cardiovasc. Res. 2007;73:414–423. doi: 10.1016/j.cardiores.2006.08.021. [PubMed] [Cross Ref]
  15. Ladurner A., Schachner D., Schueller K., Pignitter M., Heiss M.H., Somoza V., Dirsch V.M. Impact of trans-resveratrol-sulfates and -glucuronides on endothelial nitric oxide synthase activity, nitric oxide release and intracellular reactive oxygen species. Molecules. 2014;19:16724–16736. doi: 10.3390/molecules191016724. [PMC free article] [PubMed] [Cross Ref]
  16. Grau M., Bölck B., Bizjak D.A., Stabenow C.J.A., Bloch W. The red-vine-leaf extract AS195 increases nitric oxide synthase–dependent nitric oxide generation and decreases oxidative stress in endothelial and red blood cells. Pharmacol. Res. Perspect. 2016;4:e00213. doi: 10.1002/prp2.213. [PMC free article][PubMed] [Cross Ref]
  17. Lorenz M., Wessler S., Follmann E., Michaelis W., Dusterhoft T., Baumann G., Stangl K., Stangl V. A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation. J. Biol. Chem. 2004;279:6190–6195. doi: 10.1074/jbc.M309114200. [PubMed] [Cross Ref]
  18. World Medical Association World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA. 2013;310:2191–2194. [PubMed]
  19. Vijayananthan A., Nawawi O. The importance of good clinical practice guidelines and its role in clinical trials. Biomed. Imaging Interv. J. 2008;4:e5. doi: 10.2349/biij.4.1.e5. [PMC free article] [PubMed][Cross Ref]
  20. Inbar O., Bar-Or O., Skinners J.S. The Wingate Anaerobic Test. Human Kinetics; Champaign, IL, USA: 1996.
  21. Gül I., Gökbel H., Belviranli M., Okudan N., Büyükbas S., Başarali K. Oxidative stress and antioxidant defense in plasma after repeated bouts of supramaximal exercise: The effect of coenzyme Q10. J. Sports Med. Phys. Fitness. 2011;51:305–312. [PubMed]
  22. Zouhal H., Rannou F., Gratas-Delamarche A., Monnier M., Bentue-Ferrer D., Delamarche P. Adrenal medulla responsiveness to the sympathetic nervous activity in sprinters and untrained subjects during a supramaximal exercise. Int. J. Sports Med. 1998;19:172–176. doi: 10.1055/s-2007-971899. [PubMed][Cross Ref]
  23. Blache D., Prost M. Free radical attack: Biological test for human resistance capability. In: Ponnamperuma C., Gehrke C.W., editors. Proceedings of the IX College Park Colloquium on Chemical Evolution: A Lunar-Based Chemical Analysis Laboratory (LBCAL 1989) NASA; Washington, DC, USA: 1992. pp. 82–98.
  24. Lesgards J.F., Durand P., Lassare M., Stocker P., Lesgards G., Lanteaume A., Prost M., Lehucher-Michel M.P. Assessment of lifestyle effects on the overall antioxidant capacity of healthy subjects. Environ. Health Perspect. 2002;110:479–487. doi: 10.1289/ehp.02110479. [PMC free article] [PubMed][Cross Ref]
  25. Kumagai J., Kawaura T., Miyazaki T., Prost M., Prost E., Watanabe M., Quentin-Leclercq J. Test for antioxidant ability by scavenging long-lived mutagenic radicals in mammalian cells and by blood test with intentional radicals: An application of gallic acid. Radiat. Phys. Chem. 2003;66:17–25. doi: 10.1016/S0969-806X(02)00288-8. [Cross Ref]
  26. Stocker P., Lesgards J.F., Vidal N., Chalier F., Prost M. ESR study of a biological assay on whole blood. Antioxidant efficiency of various vitamins. Biochim. Biophys. Acta. 2003;1621:1–8. doi: 10.1016/S0304-4165(03)00008-4. [PubMed] [Cross Ref]
  27. Caspar-Bauguil S., Maestre N., Segafredo C., Galinier A., Garcia J., Prost M., Périquet B., Pénicaud L., Salvayre R., Casteilla L. Evaluation of whole antioxidant defenses of human mononuclear cells by a new in vitro biological test: Lack of correlation between erythrocyte and mononuclear cell resistance to oxidative stress. Clin. Biochem. 2009;42:510–514. doi: 10.1016/j.clinbiochem.2008.11.014. [PubMed] [Cross Ref]
  28. Rossi R., Pastorelli G., Corino C. Application of KRL test to assess total antioxidant activity in pigs: Sensitivity to dietary antioxidants. Res. Vet. Sci. 2013;94:372–377. doi: 10.1016/j.rvsc.2012.08.005.[PubMed] [Cross Ref]
  29. Prost M. Utilisation de Générateur de Radicaux Libres dans le Domaine des Dosages Biologiques. 2,642,526. French Patent. 1989 Jan 27;
  30. Prost M. Process for the Determination by Means of Free Radicals of the Antioxidant Properties of a Living Organism or Potentially Aggressive Agents. 5,135,850 A. U.S. Patent. 1989 Jan 27;
  31. Prost M. Method for Determining the Antiradical Defense Potential and Use Thereof, in Particular in Veterinary and Human Preventive Therapeutics. 20060234329 A1. U.S. Patent. 2003 Oct 22;
  32. Driss T., Vandewalle H. The measurement of maximal (anaerobic) power output on a cycle ergometer: A critical review. BioMed Res. Int. 2013;2013:589361. doi: 10.1155/2013/589361. [PMC free article][PubMed] [Cross Ref]
  33. Johnson M.A., Sharpe G.R., Brown P.I. Inspiratory muscle training improves cycling time-trial performance and anaerobic work capacity but not critical power. Eur. J. Appl. Physiol. 2007;101:761–770. doi: 10.1007/s00421-007-0551-3. [PubMed] [Cross Ref]
  34. Cooper R., Naclerio F., Allgrove J., Jimenez A. Creatine supplementation with specific view to exercise/sports performance: An update. J. Int. Soc. Sports Nutr. 2012;9:1–11. doi: 10.1186/1550-2783-9-33. [PMC free article] [PubMed] [Cross Ref]
  35. Collomp K., Ahmaidi S., Audran M., Chanal J.L., Préfaut C. Effects of caffeine ingestion on performance and anaerobic metabolism during the Wingate Test. Int. J. Sports Med. 1991;12:439–443. doi: 10.1055/s-2007-1024710. [PubMed] [Cross Ref]
  36. Tallis J., Duncan M.J., Leddington Wright S., Eyre E.L.J., Bryant E., Langdon D., James R.S. Assessment of the ergogenic effect of caffeine supplementation on mood, anticipation timing, and muscular strength in older adults. Physiol. Rep. 2013;1:e00072. doi: 10.1002/phy2.72. [PMC free article] [PubMed][Cross Ref]
  37. Hodgson A.B., Randell R.K., Jeukendrup A.E. The metabolic and performance effects of caffeine compared to coffee during endurance exercise. PLoS ONE. 2013;8:e59561 doi: 10.1371/journal.pone.0059561. [PMC free article] [PubMed] [Cross Ref]
  38. Strait J.B., Lakatta E.G. Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail. Clin. 2012;8:143–164. doi: 10.1016/j.hfc.2011.08.011. [PMC free article] [PubMed][Cross Ref]
  39. Kitzman D.W., Groban L. Exercise intolerance. Heart Fail. Clin. 2008;4:99–115. doi: 10.1016/j.hfc.2007.12.002. [PMC free article] [PubMed] [Cross Ref]
  40. Keshavarz-Motamed Z., Garcia J., Gaillard E., Capoulade R., Le Ven F., Cloutier G., Kadem L., Pibarot P. Non-invasive determination of left ventricular workload in patients with aortic stenosis using magnetic resonance imaging and doppler echocardiography. PLoS ONE. 2014;9:e86793 [PMC free article][PubMed]
  41. Vita J.A. Polyphenols and cardiovascular disease: Effects on endothelial and platelet function. Am. J. Clin. Nutr. 2005;81:292S–297S. [PubMed]
  42. Ras R.T., Zock P.L., Draijer R. Tea consumption enhances endothelial-dependent vasodilation; a meta-analysis. PLoS ONE. 2011;6:e16974 doi: 10.1371/journal.pone.0016974. [PMC free article] [PubMed][Cross Ref]
  43. Li S.H., Tian H.B., Zhao H.J., Chen L.H., Cui L.Q. The acute effects of grape polyphenols supplementation on endothelial function in adults: Meta-analyses of controlled trials. PLoS ONE. 2013;8:e69818 doi: 10.1371/journal.pone.0069818. [PMC free article] [PubMed] [Cross Ref]
  44. Kelishadi R., Gidding S.S., Hashemi M., Hashemipour M., Zakerameli A., Poursafa P. Acute and long term effects of grape and pomegranate juice consumption on endothelial dysfunction in pediatric metabolic syndrome. J. Res. Med. Sci. 2011;16:245–253. [PMC free article] [PubMed]
  45. Grassi D., Desideri G., Di Giosia P., De Feo M., Fellini E., Cheli P., Ferri L., Ferri C. Tea, flavonoids, and cardiovascular health: Endothelial protection. Am. J. Clin. Nutr. 2013;98:1660S–1666S. doi: 10.3945/ajcn.113.058313. [PubMed] [Cross Ref]
  46. Morillas-Ruiz J., Zafrilla P., Almar M., Cuevas M.J., López F.J., Abellán P., Villegas J.A., González-Gallego J. The effects of an antioxidant-supplemented beverage on exercise-induced oxidative stress: Results from a placebo-controlled double-blind study in cyclists. Eur. J. Appl. Physiol. 2005;95:543–549. doi: 10.1007/s00421-005-0017-4. [PubMed] [Cross Ref]
  47. Powers S.K., De Ruisseau K.C., Quindry J., Hamilton K.L. Dietary antioxidants and exercise. J. Sports Sci. 2004;22:81–94. doi: 10.1080/0264041031000140563. [PubMed] [Cross Ref]
  48. Tauler P., Aguiló A., Fuentespina G.E. Response of blood cell antioxidant enzyme defenses to antioxidant diet supplementation and to intense exercise. Eur. J. Nutr. 2006;45:187–195. doi: 10.1007/s00394-005-0582-7. [PubMed] [Cross Ref]
  49. MacRae H.S.H., Mefferd K.M. Dietary antioxidant supplementation combined with quercetin improves cycling time trial performance. Int. J. Sport Nutr. Exerc. Met. 2006;16:405–419. doi: 10.1123/ijsnem.16.4.405. [PubMed] [Cross Ref]
  50. Bloomer R.J., Goldfarb A.H., McKenzie M.J. Oxidative stress response to aerobic exercise: Comparison of antioxidant supplements. Med. Sci. Sports Exerc. 2006;38:1098–1105. doi: 10.1249/01.mss.0000222839.51144.3e. [PubMed] [Cross Ref]